
ENVIRONMENTAL
HEALTH 
PERSPECTIVES

This article will be available in its final, 508-conformant form 2–4 months 
after Advance Publication. If you need assistance accessing this article before 
then, please contact ehp508@niehs.nih.gov. Our staff will work with you to 
assess and meet your accessibility needs within 3 working days.  

http://www.ehponline.org

ehp
Identification and Prioritization of Relationships  

between Environmental Stressors and Adverse Human 
Health Impacts

Shannon M. Bell and Stephen W. Edwards

http://dx.doi.org/10.1289/ehp.1409138

Received: 27 August 2014
Accepted: 7 April 2015

Advance Publication: 10 April 2015

mailto:ehp508@niehs.nih.gov
http://dx.doi.org/10.1289/ehp.1409138


 

1 

 

Identification and Prioritization of Relationships between 

Environmental Stressors and Adverse Human Health Impacts  

Shannon M. Bell1,2,3 and Stephen W. Edwards2 

1Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA; 2Integrated 

Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, 

Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle 

Park, NC, USA; 3Current affiliation: ILS/Contractor Supporting the NTP Interagency Center for 

the Evaluation of Alternative Toxicological Methods (NICEATM), Research Triangle Park, 

North Carolina, USA 

Address correspondence to Stephen W. Edwards, U.S. Environmental Protection Agency, 109 

T.W. Alexander Drive, Mail Code: B305-01, Research Triangle Park, North Carolina 27709 

USA. Telephone: 919-541-0514. E-mail: edwards.stephen@epa.gov  

Running title: Identification of environment-health relationships 

Acknowledgments: The authors would like to thank Julia Rager, George Woodall, and Jon 

Sobus for critical evaluation of the manuscript. Shannon Bell was supported by an appointment 

to the Internship/Research Participation Program at the Office of Research and Development, 

U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and 

Education through an interagency agreement between the U.S. Department of Energy and EPA. 

The information in this document has been funded wholly by the U. S. Environmental Protection 



 

2 

 

Agency. It has been subjected to review by the National Health and Environmental Effects 

Research Laboratory and approved for publication. 

Disclaimer: Approval does not signify that the contents reflect the views of the Agency, nor 

does mention of trade names or commercial products constitute endorsement or recommendation 

for use.  

Competing financial interests: The authors report no competing financial interests. 

  



 

3 

 

Abstract 

Background: There are over 80,000 chemicals in commerce with little data available describing 

their impacts on human health. Biomonitoring surveys, such as the NHANES, offer one route to 

identifying possible relationships between environmental chemicals and health impacts, but 

sparse data and the complexity of traditional models makes it difficult to leverage effectively. 

Objective: We describe a workflow to efficiently and comprehensively evaluate and prioritize 

chemical-health impact relationships from the NHANES biomonitoring survey studies.  

Methods: Using a frequent itemset mining (FIM) approach, chemical to health biomarker and 

disease relationships were identified.  

Results: The FIM method identified 7,848 relationships between 219 chemicals and 93 health 

outcomes/ biomarkers. Two case studies used to evaluate the FIM rankings demonstrate that the 

FIM approach is able to identify published relationships. Since the relationships are derived from 

the vast majority of the chemicals monitored by NHANES, the resulting list of associations is 

appropriate for evaluating results from targeted data mining or identifying novel candidate 

relationships for more detailed investigation.  

Conclusions: Due to the computational efficiency of the FIM method, all chemicals and health 

effects can be considered in a single analysis. The resulting list provides a comprehensive 

summary of the chemical/health co-occurrences from NHANES that are higher than expected by 

chance. This information enables ranking and prioritization on chemicals or health effects of 

interest for evaluation of published results and design of future studies. 
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Introduction 

There is very little human health or exposure data for the majority of the more than 

80,000 chemicals in commerce (Egeghy et al. 2012; Judson et al. 2009). The lack of data poses 

challenges to those looking to mitigate the potential risks or evaluate impacts in a comprehensive 

manner. The National Health and Nutrition Examination Survey (NHANES) (CDC, 2010) 

provides a snapshot of the current health status of a representative US population. Numerous 

studies using the NHANES and similar datasets have been used to extract possible associations 

between markers of exposure to environmental chemicals and possible health effects (Patel and 

Ioannidis 2014). The nature of the data sets and the models used makes it a challenge to compare 

the studies in a systematic way and consequently leads to an iterative process involving multiple 

individual hypotheses being tested over the course of the analysis (Patel and Ioannidis 2014). 

This results in a complicated design where it is impossible to account for multiple individual a 

priori hypothesis tests (Patel and Ioannidis 2014). The consequence of this is more false positive 

relationships and an overall lack of transparency. 

Researchers have conducted large-scale analyses of the datasets (Gennings et al. 2012; 

Liu et al. 2009; Patel et al. 2010; Patel et al. 2012a; Patel et al. 2012b), enabling better control for 

the multiple testing effects of running several regression models. Patel et al (Patel et al. 2010; 

Patel et al. 2012a; Patel et al. 2012b) used FDR (false discovery rate) correction in a semi-

supervised approach to test hundreds of regression models associating environmental factors 

with a specific disease outcome in what they coined “Environment-Wide Association Study” 

(EWAS). This approach enables testing of factors that may not be implicated in other work as 

having a relationship with the outcome, increasing the likelihood that new hypotheses are 
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generated. It also makes results more comparable to traditional approaches, which may be 

advantageous when aggregating results of several studies. Another approach has been to lump 

variables, combining compounds in a similar class or affecting the same pathway. This lumping 

approach helps to limit the number of tests run and can provide additional insight on how effects 

might be related. Liu et al (2009) looked at functionally related chemicals and their effects on the 

liver by first prioritizing the chemicals of strongest effect based on canonical correlation before 

building regression models. Gennings et al (2012) went a step further in defining agglomerative 

markers for both health outcomes and environmental chemicals. The process of calculating a 

relative weight for the chemicals in a group enables identification of the ones having the most 

effect on the outcome, and can help prioritize or identify additional confounding variables for 

individual regression models. Since one challenge is in defining and assigning the negative 

health outcomes, combined outcomes like general wellness may facilitate model development 

when an exact association is still unclear.  

Unfortunately, none of these approaches address the challenges of missing/sparse data 

and identifying possible confounding variables in instances where there is no co-occurrence data. 

Additionally, the regression models typically used are impractical for a comprehensive survey of 

all compounds versus all relevant health measures in the NHANES data. To address these issues 

as well as to enable prioritization of associations we developed a workflow based on frequent 

itemset mining (FIM) (Bell and Edwards 2014). This approach enables consuming a dataset and 

generating associations that: 1) describe the relative likelihood of an exposure and health event 

not co-occurring by chance, 2) enable relative ranking for prioritization even in the absence of 

co-occurrence, 3) are generated by a simple, transparent format for communication with subject 

domain experts.  
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Here we present the application of the FIM approach to a meta-analysis of the 1999-2010 

NHANES cycles. This work aims to address the ability of a market basket approach to facilitate 

prioritization of chemical/health associations, comparisons and reconciliation of prior published 

works that consider only a subset of the data, and hypothesis generation for follow up studies.  

Exploration of the robustness of the approach to the different data cycles and confounding 

variables is shown. This approach was evaluated via two case studies, the C8 Science Panel’s 

(http://www.c8sciencepanel.org/) review of perfluorooctanoic acid (PFOA) (Fletcher et al. 2005) 

and a comparison to the multiple regression approach presented in Patel et al.’s study looking at 

type 2 diabetes (Patel et al. 2010). Based on the positive results from this evaluation, we propose 

the use of this FIM workflow to assist in interpreting the literature and prioritizing chemicals and 

chemical-health associations for further study. 

Methods  

Data sources and processing 

Figure 1 outlines the general workflow for the generation and use of associations between 

chemical and effects markers based on NHANES data. Data from NHANES 1999-2010 (CDC, 

2010) forms the basis of this study. For details on the specific variables used, including the 

variable label and a description, see Supplemental Material, File S1. More information on the 

variable distribution and cutoffs used for discretization (along with source) see Supplemental 

Material, File S2. Variables were classified as environmental chemicals (E), health biomarkers 

(H), or questionnaire responses (Q). Out of the 373 possible unique variables, the data contained 

236 markers for environmental chemicals, 104 of health biomarkers, and 33 questionnaire 

responses. Across all cycles only 28, 52, 24 measures for E, H, and Q, respectively were in all 
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the datasets. Data processing and analysis followed the approach described in Bell and Edwards 

(2014). Urinary measures for E and H were creatinine corrected due to the high level of 

correlation between measures in the absence of the correction (Figure 1, Preprocessing). 

Discretization (Figure 1, Discretization) was done by identifying values below (if applicable), at, 

or above (-1, 0, 1, respectively) normal, which was defined either by the population distribution 

(< 2.5 percentile or >97.5 percentile) or clinically established values (outside of pre-defined 

normal range). For variables having unclear clinical ranges (such as some vitamin and 

carotenoids), population distribution was used. All values used for the discretization are recorded 

in the Supplemental Material, File S2 along with references for those values derived from 

clinically established values. Full text descriptions of the variables can be found in Supplemental 

Material, File S1. Questionnaire data were taken as yes (1) if there was a positive response, no 

(0) or no data (NA) otherwise. Two variables were derived from the questionnaire responses. 

Grade 1 angina, abbreviated here as “CDQ99”, is defined based on the answers to questions 

relating to chest pain as specified by the CDC ( 

http://www.nber.org/nhanes/2005_2006/downloads/cdq_d.pdf)). Cardiovascular disease, 

abbreviated here as “CD”, is defined based on grade 1 angina, self-reported angina, or heart 

attack (i.e. CDQ99 = 1 or MCQ160D = 1 MCQ160E = 1 or MCQ160C= 1). A large portion of 

the population has diabetes or have not been diagnosed as diabetic but the laboratory tests 

indicate a risk (high blood glucose and hemoglobin A1c); therefore, a marker for diabetes (Dia) 

was added to include both these groups (Dia = DIQ010 = 1 or LBXGLU = 1 or LBXGH = 1).  

Identification of associations 

Associations (Figure 1, Rule identification) were identified as described in Bell and 

Edwards (2014) using the frequent itemset mining approach, see Supplemental Material, File S3 
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(text version) and File S4 (Excel version). Frequent itemset mining (also known as market basket 

analysis or association rule mining (Agrawal et al. 1993; Borgelt and Kruse 2002; Borgelt 2003, 

2012; Hahsler et al. 2005)) looks for patterns of frequently co-occurring items within a dataset. 

Interest measures (Hahsler et al. 2005; Tan et al. 2004) are used to describe the likelihood of an 

itemset or an association rule (X → Y). Support describes the proportion of the transactions 

(samples, subjects) containing the rule (X and Y) while confidence of a rule is the proportion of 

all transactions having X that also have Y. Stated another way, the probability of finding Y given 

X. Lift measures how frequently X and Y co-occur verses the expectation if they were 

independent. Odds ratio relates the “risk” of Y when X is present relative to when X is not 

present. 

 A minimum support value of 10 samples was used in conjunction with a minimum 

confidence of 0.1 and lift of 1.0 to account for the sparsity of data. For a more detailed 

discussion of setting confidence and support measures see (Hahsler et al. 2005; Megiddo and 

Srikant 1998). Rules were identified with the chemical as the antecedent (Bell and Edwards 

2014). Lift interest measure (Brin et al. 1997) from the association rules was used as a basis for 

rank comparison across NHANES cycles and data subsets. For the rank-based comparisons to 

look at the impact of cycle years or confounding variables on the rules generated, the top 

association (by highest lift) was numbered 1. Associations not found in that particular dataset 

were assigned a value greater than the largest number of associations for the itemsets compared 

to include them in the ranking. All analyses were done in R (v. 3.0.3) (R Development Core 

Team 2011) using the arules package (Hahsler et al. 2005) for generating the association rules. 

All code and input data required to replicate this study is available in the Supplemental Material, 

File S5.  
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Case studies 

 The list of factors examined by the C8 Science panel (Fletcher et al. 2005) was compared 

to the variable list used in this study to identify common outcomes considered. All associations 

containing perfluorooctanoic acid and relating to a health outcome from the questionnaire data 

were extracted from Supplemental Material, File S3 for consideration (see also Supplemental 

Material, File S4, Worksheet - StrongPFOA). For any outcome where either the C8 panel found 

a probable association or the FIM yielded an association with PFOA, the details from the C8 

panel were considered for potential sources of discrepancy to gauge if there was a likely false 

positive or false negative from the FIM. For comparison to the Patel et al EWAS study of 

diabetes (Patel et al. 2010), associations including individuals with elevated fasting blood 

glucose (LBXGLU=1, see Supplemental Material, File S2), and those that had a positive diabetes 

aggregate marker (Dia, described above) were considered. The list of significant associations 

taken from Patel et al (Figure 2 and Supplemental Material, Table S1 from Patel et al. 2010) 

were used to compare with the FIM. FIM associations covered NHANES cycles 1999-2010 

while the ones in the EWAS study covered each cycle from 1999-2006 individually.  

Results 

General data properties 

Individual biomarkers of environmental chemicals and disease rates showed some 

changes across NHANES cycles (Supplemental Material, Figure S1). Environmental chemicals 

(Supplemental Material, Figure S1A-C), generally show a slight decrease in recent cycles in the 

average amount per individual with notable exceptions (e.g., enterodiol, Supplemental Material, 

Figure S1A).  Disease prevalence (based on survey responses) tended to increase during this 
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same period (Supplemental Material, Figure S1D-F). The number of health outcomes associated 

with a given environmental chemical tended to decrease in later cycles (Supplemental Material, 

Figure S2). Figure 2 illustrates the rules generated using the different data stratifications (sex and 

race/ethnicity), highlighting the diversity of the different strata. Considering only the 

associations generated from all data (Figure 3) it can be noted that some markers for health are 

more strongly and commonly associated with high levels of environmental chemicals (for 

example, Vitamin D levels, LBDVID), whereas other markers as associated with very few 

chemicals (MCQ053, treatment for anemia in past 3 months) (see also Supplemental Material, 

File S1). 

Prioritization of chemical→health associations via FIM 

A list of 7848 associations between 219 chemicals and 93 markers of health (combining 

questionnaire and health biomarkers) was generated using all data from 1999-2010 and data 

strata representing sources of known confounding factors, sex and race/ethnicity (Supplemental 

Material, File S3 and File S4, Worksheet – RulesAcrossVarq=0.025conf=0.1su). Confidence 

values describe the proportion of associations containing the chemical that also contain the 

health marker noted and can be used to rank observations for a given chemical. Odds ratios 

provide a measure of the odds that the chemical and the health outcome are related vs the odds 

that they are independent. These can be used to compare within and across chemicals within the 

same association set. 

Workflow example using PFOA to identify candidates for follow up 

To illustrate using the FIM approach for hypothesis generation and prioritization, we 

present an example using PFOA. All associations generated across the strata are available in 
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Supplemental Material, File S3 and File S4. Following the workflow outlined in Figure 1, rules 

were generated using different data stratifications. All associations with PFOA were extracted 

from the combined data and across each stratification (sex and race/ethnicity) (Figure 4, panel 1). 

Initial stratification based on sex and race/ethnicity helps target groups that could have 

differential disease prevalence for outcomes of interest.  Associations with a confidence >= 0.2 

and an odds ratio >= 1.1 were prioritized as “strong” associations (Figure 4, panel 2, and 

Supplemental Material, File S4, Worksheet - StrongPFOA).   

In viewing the results, findings that are consistent among several strata are considered top 

candidates for follow up either by a targeted literature search or by more quantitative modeling. 

These include cholesterol and hypertension along with arthritis and overweight. The second 

group of candidates for further investigation are those with clear differences among the different 

subgroups such as self-reported thyroid problems in females (MCQ160M) and altered 

phosphorous (LBXSPH) and uric acid (LBXSUA) seen in the male and non-hispanic black 

groups. Characterization of the associations is an important part of the work flow. Here one 

looks at the co-associations with other chemicals/health outcomes as ways to determine 

additional support (multiple associations with variables measuring similar states) or possible 

confounding variables. For example, there are no clinical markers for thyroid disruption that are 

also associated with PFOA, yet there are several clinical markers to accompany the self-reported 

markers for high cholesterol, which suggests that the overall weight of evidence for the 

cholesterol association with PFOA is higher than the thyroid association. In looking at the other 

chemicals associated with self-reported thyroid problems in the female stratification there is also 

an absence of clinical markers. Furthermore, when one looks at the compounds associated with 

self-reported thyroid problems (PCBs, organo chloro pesticides, PFOA and PFOS, TCDD, and 



 

12 

 

cadmium), there is a reasonable basis for co-exposure (Figure 4, panel 3, and Supplemental 

Material, File S4, Worksheet – StrongMCQ160M). Future models looking at the interaction of 

PFOA and thyroid should account for these compounds. Similarly the association between 

PFOA and phosphorous and uric acid in the male and non-hispanic black strata could result from 

an underlying relationship with diabetes or hyperparathyroidism. 

Comparison of PFOA associations with the C8 panel findings 

To assess the ability of the FIM method to identify associations, a comparison to the C8 

Science Panel’s (Fletcher et al. 2005) findings on probable link evaluations with PFOA was 

carried out. The C8 Science Panel is a group of public health scientists commissioned to assess 

whether or not there was support for a probable link between exposure to PFOA and various 

health outcomes as part of a class action settlement. As part of their work, they did an extensive 

research review to compile what was known about health effects of PFOA as well as to design 

and implement new research on exposure effects using a community in the Mid-Ohio Valley 

whose exposure to PFOA triggered the lawsuit.  

Table 1 shows the results of the analysis. NHANES variable labels used for the 

comparison are shown in the Variable column. Health outcomes studies by the C8 panel were 

omitted if there was no comparable information from the NHANES subset considered in this 

paper. Two diseases showed a disagreement between FIM and the C8 panel.  For high blood 

pressure, the measurements used in the studies considered by the panel were different from those 

used in the NHANES study and this likely contributed to the disagreement. For arthritis, the 

panel concluded that there was no trend with increasing exposure. Interestingly enough, there 
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was an association with osteoarthritis and low doses of PFOA noted in the C8 study population. 

This suggests a possible relationship at lower exposures.  

Comparison of diabetes associations with the EWAS findings 

Whereas comparison of the results from the C8 panel (Fletcher et al. 2005)  with our FIM 

approach highlights the distinctions between a thorough literature review and a survey of 

NHANES, the original EWAS study by Patel, et al (2010) is the closest match to our method in 

terms of an unsupervised mining of the NHANES data. A comparison of these results shows that 

a complete survey of the NHANES data using the FIM method compares favorably to a more 

targeted mining of data for a specific disease outcome via the EWAS approach. 

Table 2 shows the number of chemicals in each group that had associations with diabetes 

markers. The values for the EWAS study are the maximum across all cycles they considered (see 

Methods section), whereas the FIM used data from all cycles (1999-2010) in identifying the 

associations. FIM (fasting blood glucose) highlights the number of associations for each group of 

environmental chemicals containing elevated blood glucose levels, which matches the criteria 

used by Patel, et al (2010). The FIM approach picks up slightly more associations for PCBs and 

OC pesticides whereas the EWAS study uniquely identifies two heavy metal associations. When 

comparing the specific chemicals, our method detected 11 of the 18 chemicals (61%) from the 

EWAS study along with 16 not previously identified. Of the 7 chemicals missed by our method, 

the 5 non-metals do not have data for cycle years later than 2004. Since the diabetes marker was 

measured in all cycle years and the apparent prevalence has increased in later years 

(Supplemental Material, Figure S1F), this artificially reduces the associations seen across all 

cycle years because there is no opportunity for co-occurrence. The stronger associations from the 
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EWAS study, including the two chemicals identified in two separate cycle years, were still 

detectable in our analysis despite this fact. This demonstrates that for strong associations the 

method is robust to missing data.  

An additional FIM metric (diabetes marker, Dia) considers high hemoglobin A1C or if the 

subject reported being diagnosed as a diabetic in addition to the blood glucose measurement. 

Using this variable increased the total number of associations from 27 to 107 (Table 2). For a 

broad survey of this nature with very sparse responses, this aggregate marker helps to capture 

lower strength associations. For example, all but two of the chemicals from the Patel study are 

identified using the FIM method when this more inclusive diabetes metric is used. Since the goal 

of this work is to identify possible associations for more detailed follow up, the argument for 

using a more restrictive marker such as glucose seems less compelling.  However, since our 

results include both metrics, along with the other individual components included in the 

combined marker, this decision can be left to the user.  

Discussion 

Findings from the case studies 

In both the C8 panel comparison and the EWAS comparison, most of the relationships 

identified were recovered using the FIM approach. In the first case study (Table 1), discrepancies 

were due to the evidence under consideration by the C8 panel. In the case of high blood pressure, 

the precise measurements used were different, and the choice of which measurement is most 

appropriate should be made in the context of the specific question being asked. In the case of 

arthritis, the expert panel considered dose trends, which are a key consideration when 

determining causality.  This case study highlights that broad surveys such as the FIM mining of 
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the NHANES data presented here should never be considered a replacement for an expert review 

of the scientific literature.  The data presented, however, could provide an ideal starting point for 

such a panel since all of the diseases identified by the panel were flagged in the FIM survey.  

The second case study demonstrated that the results from this comprehensive survey of 

NHANES are comparable to a more targeted study focused on a single disease endpoint. The 

slight increase in findings for FIM compared with EWAS for comparable markers (Table 2) was 

not surprising given the additional cycles investigated and potentially less stringent criteria due 

to the intentionally low confidence level used in FIM. The use of an aggregate marker such as 

the diabetes marker (Table 2) that is less sensitive to variability of spot measurements in 

individual variables captures many more potential associations that either method using a single 

marker but prudent follow up should include consideration of the associations seen with each 

marker individually. Together, these results suggest that the results from the FIM represent an 

ideal starting point for either evaluating diseases potentially associated with a given chemical or 

chemicals that may be associated with a given disease. By providing a comprehensive list of 

associations from NHANES, the relative strength of association can be considered rather than 

attempting to interpret p-values in light of the extensive multiple testing inherent with this 

dataset (Sobus, 2015). 

In general, it appears that the changing prevalence of both disease and amount of 

environmental chemicals had an effect on the associations found for the different cycles 

(Supplemental Material, Figure S1& S2). Using set criteria as opposed to a distribution based 

cutoff for identifying “presence” of the environmental chemical or using a range of cutoffs for 

determining when an individual is “exposed” (Bell and Edwards 2014) may be desirable to 
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adjust the false non-discovery rate (Genovese and Wasserman 2002; Sarkar 2002; Storey 2003). 

For example, serum lead under 20ug/dl in adults is considered to be within the threshold for a 

clinically normal range (A.D.A.M. Medical Encyclopedia 2013.) though acceptable levels in 

children are well below this value. The cutoff for the NHANES variable used in the analysis 

(LBXBPB)was 6.02ug/dl (Supplemental Material, File S2), which was based on the population 

distribution. Most of the NHANES individuals used in this analysis had levels far below this 

(Supplemental Material, Figure S1) and the median level declined each cycle. As a result, use of 

the population distribution for each cycle independently would result in different cutoffs over 

time with potentially drastic impacts on the associations seen when looking at 1999-2000 cycle 

vs the 2009-2010 cycle. The aggregate analysis using the full population across all cycle years to 

establish “exposed” or a fixed level is likely to decrease this effect.  

Figure 2 shows there is good overall correlation between the rules generated using all the 

subgroups and those where subsets based on sex or race were used, however, it also highlights 

associations that are only obtained looking at a subset of the data. This suggests that depending 

on the relationship or populations of interest, it may be desirable to consider associations mined 

from these subsets separately as recommended in the workflow (Figure 1 and 4). The association 

table (Supplemental Material, File S3 and workbook in Supplemental Material, File S4) 

generated using the FIM approach easily facilitates such additional considerations as shown in 

Figure 4. Further subgroups of interest can be easily incorporated into the workflow for 

consideration. 
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Advantage of using FIM to prioritize and control for multiple testing  

One use of the proposed method is to aid in prioritization of associations. For example, 

when evaluating several separate studies all linking a single health outcome to multiple 

chemicals, these results can provide a common association metric for comparison among the 

chemicals. When evaluating a single report of a chemical association with a health outcome, 

these results can provide an indication of how the strength of that association compares with 

other chemicals and/or what other chemicals might need to be considered in a cumulative risk 

context. Alternatively, these results can be used prospectively to identify putative chemical-

outcome relationships or possible co-occurring compounds for more detailed analysis.  

Using the EWAS approach (Patel et al. 2010; Patel et al. 2012a; Patel et al. 2012b), the 

authors presented a strategy to associate environmental factors from the NHANES surveys to a 

specific disease. Using multiple logistic regression models and controlling for multiple testing, 

they were able to generate a list of statistically significant associations between the 

environmental chemicals and a health measure, such as the type 2 diabetes example described 

here (T2D, defined as fasting serum glucose >= 126 mg/dL) (Patel et al. 2010). This approach 

has distinct advantages over more ad hoc approaches: they can compare multiple relationships; 

and the model is relatively transparent with respect to why given relationships were considered. 

The FIM strategy extends this further by investigating all chemical-health relationships 

simultaneously with relatively little computational overhead. Thus, for a given chemical-health 

relationship one can identify not only other chemicals that possibly relate to that health state, but 

also other health states related to each chemical along with the relative strength of association as 

described in the example workflow. Since both multiple regression models and FIM have distinct 
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advantages and disadvantages as discussed below, they should be considered complementary 

approaches to a complex problem. 

Most EWAS studies reported previously have used some form of regression model. 

These models fit into a hypothesis testing framework allowing for specific calculation of Type 1 

and Type 2 error and can control for confounding variables (e.g. sex, race/ethnicity, smoking 

status, etc). The FIM method (Bell and Edwards 2014) provides a comprehensive description of 

relationships for the entire dataset, providing the information needed for generating hypotheses. 

While it does not facilitate control over confounding variables aside from data stratification, it 

does comprehensively report all associated variables that were included in the study. This could 

be used in conjunction with more traditional regression models to avoid missing potential 

confounders, as suggested in the follow up options provided in Figures 1 and 4. The NHANES 

study design results in variables that are never measured together in an individual (e.g. some 

urinary chemicals). These are impossible to combine in a regression model. The FIM method 

cannot give any information on the interactions among these variables; however, it can be used 

to identify possible confounding chemicals/diseases even if the dataset does not include any co-

occurring measures.  

Furthermore, the FIM method enables a quick relative comparison with other measures 

on either side of the relationship. Comparing the confidence values, one can easily prioritize the 

health outcomes most likely associated with a particular chemical. Using odds ratios, one can see 

how likely an outcome is to be associated with other chemicals. The FIM can also be used to 

extract chemical-chemical or health-health associations just as the chemical-health associations 

are extracted. This can give better insight to highly related variables within the dataset indicating 
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possible common co-exposures or redundant markers (Bell and Edwards 2014). 

Follow up of the associations is a key part of the workflow as an association is only describing 

the dataset. If using the associations to prioritize or put into context literature findings, then the 

ranked lists are sufficient. If the end goal is hypothesis building then the associations can be used 

to help guide a structured literature search and provide guidance in properly parameterizing a 

model to decrease multiple testing. One benefit of using association rules is that it is very quick 

and easy to obtain relationships between various chemicals and heath markers as the data are 

already processed. The nature of the rules lends itself nicely to a graphical exploration as well 

which can be helpful in integrating other information sources in the hypothesis building phase 

(Bell and Edwards, 2014). 

Conclusions 

As demonstrated, the FIM approach enables prioritization and comparison of associations 

found in the NHANES dataset. The list of chemical-health associations can be used to identify 

those health metrics that are most likely to occur for a given chemical as well as the chemicals 

most likely to associate with a given health metric. This allows prioritization of follow up studies 

to evaluate possible causal relationships. Because the method is computationally efficient (<30 

minutes on a standard laptop), it allows for a comprehensive analysis of all chemicals and health 

metrics, not just a subset of chemicals or a single health outcome. This allows the resulting list to 

be used for the evaluation of previously published associations since they can now be compared 

with all other associations for the chemical/health outcome in question. We expect that this 

approach can be extended to similar datasets and can provide a framework for researchers and 

risk managers in interpreting these types of studies.   
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Table 1. Comparison of FIM results to the C8 panel findings. 

Disease C8 finding of 
probable link 

FIM 
association 

NHANES variablea 

High blood pressure No Yes BPQ020 
BPQ030 
BPQ040A 

High cholesterol Yes Yes BPQ080 
BPQ090D 

Coronary heart 
disease 

No No CDQ99, MCQ160B-F 

Kidney No No KIQ022 
Liver No No MCQ160L 
Osteoarthritis and 
rheumatoid 

No Yes MCQ160A 

Asthma No No MCQ010 
Thyroid Yes Yes MCQ160M 
Cancer Yesb  Yes MCQ220 
Type II diabetes No No DIQ010 
aNHANES variables that best matched the endpoints considered by the C8 panel were used for 

comparison. Full descriptions of these variables can be found in Supplemental Material, File S1 except 

for CDQ99 (see Methods). bKidney and testicular cancer only. 
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Table 2. Comparison of the number of associations found for diabetes. 

Group EWAS - max 
across 99-06 cycles 

FIMa - fasting blood 
glucose 

(direct matches with 
EWAS) 

FIMb - diabetes marker 
(direct matches with 

EWAS) 

organochlorine 
pesticides 

2 5 (1) 8 (2) 

polychlorinated 
biphenyls 

11 19 (9) 24 (10) 

heavy metals 2 0 23 (2) 

dioxins & furans 3 3 (1) 13 (2) 
volatile compounds 0 0 7 

other pesticides 0 0 1 

phenols 0 0 9 
phthalates 0 0 6 
dialkyls 0 0 1 
hydrocarbons 0 0 9 
perchlorate 0 0 1 
polyflouro-
chemicals 

0 0 5 

aTotal number of associations for LBXGLU using FIM across 1999-2010. bTotal number of associations 

for Dia using FIM across 1999-2010.  
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Figure Legends 

Figure 1. General workflow using FIM. A brief overview of the workflow from Bell and 

Edwards 2014 is described. Values used in the Discretization step are a key determinate of the 

generated rules and should be reviewed.  

Figure 2. Heat map of associations across the different slices. Colors are based on odds ratio of 

the associations, associations not found or below the threshold are in grey (NA). Color labels on 

the left highlight the different chemical groups for the association. From bottom to top:  Light 

yellow=drinking water volatile organic compounds, light green= urinary perchlorate, nitrate, and 

thiocyanate, grey = phytoestrogens, light cyan = phthalates, midnight blue: urinary metals, cyan 

= current use pesticides, salmon= urinary arsenic, tan = smoking, green yellow = environmental 

pesticides, purple = PFC, magenta = PCB, pink = PAH, black = organophosphate pesticides, red 

= organochlorine pesticides, green = environmental phenols, yellow = DFP, brown= carbamates, 

blue = blood volatile organic compounds, turquoise = blood metals 

Figure 3. Odds ratios for rules generated from all data (first column from Figure 2). Row color 

labels indicate the chemical groupings as in Figure 2) and column labels indicated groupings for 

the health variables. Grey indicates no rule present for the dataset (NA). Column colors from left 

to right: turquoise = allergies, blue = anemia, brown = arthritis, yellow = asthma, green = cancer, 

red = cardiovascular health, black = complete blood count, pink = diabetes, magenta = iron, 

purple = kidney, green yellow = liver, tan = multiple associations, salmon = parathyroid, cyan = 

respiratory, midnight blue = thyroid, light cyan = vitamins and minerals, grey = weight 

Figure 4. Example workflow using PFOA. The general workflow for data processing (Figure 1) 

was employed leveraging additional data strata to obtain a set of rules. Screenshots are generated 
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using Supplemental Material, File S4. Rules containing PFOA were extracted (panel 1) then 

those meeting criteria for strong associations were filtered out (panel 2). Use of additional filters 

(panel 3) helps to identify and prioritize the relationships for further follow up.   
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